Minimal Polynomial and Jordan Form
نویسنده
چکیده
Let V be a vector space over some field k, and let α : V V be a linear map (an ‘endomorphism of V ’). Given any polynomial p with coefficients in k, there is an endomorphism p(α) of V , and we say that p is an annihilating polynomial for α if p(α) = 0. Our first major goal is to see that for any α, the annihilating polynomials can easily be classified: they’re precisely the multiples of a certain polynomial mα. We reach this goal on the next page. Let us say that a polynomial m is a minimal polynomial for α (note: ‘a’, not ‘the’) if:
منابع مشابه
Determination of a Matrix Function in the Form of f(A)=g(q(A)) Where g(x) Is a Transcendental Function and q(x) Is a Polynomial Function of Large Degree Using the Minimal Polynomial
Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...
متن کاملLecture 4: Jordan Canonical Forms
This lecture introduces the Jordan canonical form of a matrix — we prove that every square matrix is equivalent to a (essentially) unique Jordan matrix and we give a method to derive the latter. We also introduce the notion of minimal polynomial and we point out how to obtain it from the Jordan canonical form. Finally, we make an encounter with companion matrices. 1 Jordan form and an applicati...
متن کاملThe cyclic decomposition theorem
8 Matrices 16 8.1 Representation of vector spaces and linear transformations . . . . . . . . . . . . . . . 16 8.2 Similarity transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 8.3 Direct sums of matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 8.4 The companion matrix of a polynomial . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملThe Jordan canonical form
4 The minimal polynomial of a linear transformation 7 4.1 Existence of the minimal polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.2 The minimal polynomial for algebraically closed fields . . . . . . . . . . . . . . . . . 8 4.3 The characteristic polynomial and the Cayley–Hamilton theorem . . . . . . . . . . . 9 4.4 Finding the minimal polynomial . . . . . . . . . . . . . ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001